
  

A UAV Case Study with Set-based Design
 

Colin Small 
University of Arkansas 
Fayetteville, AR 72701 

214-934-4643 
cxs050@uark.edu 

 
Dr. Randy Buchanan 

US Army ERDC 
Vicksburg, MS 39180-6199 

601-634-6566 
Randy.K.Buchanan@erdc.dren.mil 

 
Dr. Edward Pohl 

University of Arkansas 
Fayetteville, AR 72701 

479-575-6029 
epohl@uark.edu 

 
Dr. Gregory S. Parnell 
University of Arkansas 
Fayetteville, AR 72701 

479-575-7423 
gparnell@uark.edu 

 
Dr. Matthew Cilli 
US Army ARDEC 
Wharton, NJ 07885 

570-982-0157 
gmattcilli@gmail.com 

 
Dr. Simon Goerger 
US Army ERDC 

Vicksburg, MS 39180-6199 
601-634-7599 

Simon.R.Goerger@usace.army.mil 
Zephan Wade 

University of Arkansas 
Fayetteville, AR 72701 

417-207-0748 
zwwade@uark.edu 

Copyright © 2018 by Colin Small, Gregory S. Parnell, Randy Buchanan, Matthew Cilli, Edward Pohl, Simon Goerger, Zephan Wade.  Published 
and used by INCOSE with permission. 

Abstract.  The DoD and Engineered Resilient Systems (ERS) community seek to leverage the 
capabilities of model-based engineering (MBE) early in the design process to improve decision 
making in AoAs. Traditional tradespace exploration with point-based design often converges 
quickly on a solution and engineering changes are required after this selection. Set-based design 
considers sets of all possible solutions and enables down-selecting possibilities to converge at a 
final solution. Using an Army case study and an open source excel add-in called SIPMath, this 
research develops an integrated MBE model and example that simultaneously generates numerous 
designs through physics models into the value and cost tradespace allowing exploration for set-
based design analysis and producing a better efficient frontier than traditional point-based design 
AoAs. Grouping design decisions into sets based on their characteristic decision, and 
simultaneously evaluating the value and cost tradespace, allows for a set-based design approach 
that provides insight into the design decisions.   

Introduction 
Engineered Resilient Systems. The Department of Defense (DoD) and the Engineered Resilient 
Systems (ERS) program seek to leverage the capabilities of model-based engineering early in the 
design process to improve decision making in the analysis of alternatives (AoA). Analysis of 
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Alternatives is a DoD requirement of military acquisition policy to ensure that multiple design 
alternatives have been analysed prior to making costly investment decisions. (U.S. Office of 
Management and Budget, 2008)  Advances in computing capabilities have increased the use of 
physics model-based systems engineering tools to simulate the performance of a large number of 
system design variants in a relatively short time. (Rinaudo, Buchanan, & Barnett, 2016) As the 
number of system design variants analysed continues to grow, the subsequent analysis of such 
large volumes of data can become time consuming. An enhanced tradespace is required and 
enabled by DoD high-performance computing (HPC) capabilities. Tradespace exploration (TSE) 
supports engineered resilient system design and development by providing analysts and decision 
makers with an understanding of capabilities, gaps, and potential compromises required to 
facilitate the realization of system objectives. Additionally, decisions can be made throughout a 
system’s lifecycle that continuously redefine its capabilities, performance, cost, manufacturability, 
delivery, and sustainability. (Kelley, Goerger, & Buchanan, 2016) TSE provides decision makers 
with an understanding of candidate system component choices and the implications of decisions 
on multiple missions across joint war fighting environments. (Spero, Avera, Valdez, & Goerger, 
2014) 

Tradespace exploration of traditional point-based design quickly converges on a solution that is a 
point in the solution space, thus necessitating modification of the chosen solution until it eventually 
meets the design objectives. While this may intuitively appear to be an effective approach, it has 
been shown to be a costly and time consuming process. When an inferior point-based design is 
chosen, the subsequent iterations to refine that solution can be time consuming and lead to a 
suboptimal design. (Iansiti, 1995) (Kalyanaram & Krishnan, 1997) Conversely, TSE of set-based 
design considers sets of all possible solutions and enables down-selecting possibilities to converge 
at a final solution. When a larger number of solutions are considered in the beginning, the 
likelihood of identifying the optimal solution increases. An investment to fully define and explore 
the tradespace in the beginning, provides for moving quickly towards convergence and the 
discovery of an ultimate solution that may have been missed in a traditional point-based design 
process.  For DoD and ERS, set-based design is useful for projects with a large number of design 
variables, tight coupling among design variables, conflicting requirements, flexibility in 
requirements allowing for trades, or technologies and design problems that are not well understood. 
(GovEvents, 2017) 

Case Study Motivation. Sponsored by ERS, a research team at the Army Armament Research, 
Engineering, and Development Center (ARDEC) has been developing a UAV case study using 
AoA best practices in order to provide a hypothetical, yet plausible example suitable for comparing 
systems engineering tradeoff analysis methods in the context of new product development efforts. 
(Cilli, 2017)  To enhance realism, the case study contains a detailed narrative incorporating many 
viewpoints and presents initial information in an unstructured manner.  To reflect reality, the case 
is written such that it involves a healthy dose of ambiguity and uncertainty. Characteristics of 
various product structure elements available to form system alternatives are described such that 
rough order of magnitude estimation methodologies suitable for conceptual design studies can be 
used to approximate cost, schedule, and performance consequences for a given concept.  The case 
study then sorts through the glut of information to bring order out of chaos and ultimately identifies 
system level solutions that best balance competing objectives in the presence of uncertainty in 
order to inform initial conceptual requirements. Although this case study provides a solution, it is 
structured in a way that invites other researchers to explore the tradespace through other methods 



 

and compare and contrast the efficiency and effectiveness of different systems engineering and 
decision management techniques.  

This case study is designed to be publicly releasable in order to encourage maximum participation 
throughout the research community. As such, Gundlach’s textbook, “Designing Unmanned 
Aircraft Systems: A Comprehensive Approach” is used as the primary basis for all physical 
architecture descriptions of the notional Unmanned Aircraft Vehicles (UAVs) and the stakeholder 
requirements are developed, from which many mathematical relationships linking system 
characteristics to cost, schedule, and performance are derived. (Gundlach, 2012) 

Overview. Using the ARDEC UAV case study described in the UAV Case Study section, this 
research develops an integrated MBE model and example that can simultaneously propagate 
design decisions through physics models into the value and cost tradespace In the UAV Tool 
section. The section on Set-Based Design describes using an open source Excel add-in called 
SIPMath by Probability Management for the near instantaneous identification and exploration of 
a large tradespace allowing for the set-based design analysis desired by the ERS program on a 
realistic pre-milestone A AoA example. (Probability Management, 2017) In addition, the 
availability of solutions to the AoA in the case study allows realistic comparison between the set-
based design methodology and traditional point-based design AoA in the Set-Based Design section. 
Lastly this paper concludes with future research and conclusions. 

UAV Case Study 
In the case study, stakeholders require a small UAV to perform surveillance missions. There are 
four design decisions: engine type, operating altitude, wingspan, and two sensor packages that 
affect the value of the system. For the engine, there is a choice between an electric engine and a 
piston engine. The wingspan and altitude choices are continuous design variables. Each sensor 
package contains two different sensors an EO sensor and an IR sensor with different fields of view 
and resolutions. Propagating these design choices through the intermediary calculations, the 
system objectives and value measures can be calculated following the assessment flow diagram in 
Figure 1. In an assessment flow diagram (AFD), the flow of calculations from physical choices 
through intermediate performance calculations to various value measures is graphically 
represented from the bottom of the diagram to the top. (Parnell, 2017) The bottom rows are the 
design choices, the middle section is the intermediate performance calculations with each shape 
being a different calculation, and the top section shows the various value measures and objectives. 
The arrows represent calculation relationships. To move from the design decisions to the value 
measures in Figure 1, each calculation diagram represents a different physics based models and 
other mathematical relationships such as those in Figures 4 and 8. Specifically, there are models 
to calculate the weight of the UAV, the weight of the sensors, the endurance, the cruising velocity, 
the probability of detecting objects, the cost, and the labor hours required to create the UAV. 



 

 
Figure 1. ARDEC UAV Case Study Assessment Flow Diagram (Cilli, 2017) 

In the case study, the value of an objective is calculated using the multi-objective additive value 
model as described in Parnell 2017. (Parnell, 2017) This multi-objective value is calculated using 
the value curves and summarized value model in Figures 3 and 4. The value model contains 10 
value measures to meet the objectives in Figure 1: UAV weight, time required to fly 10 km, time 
required for the EO sensor to scan, time required for the IR sensor to scan, dwell time, perceived 
area of UAV, and the probability of detecting humans and vehicles both during the day and at 
night. In the value curves in Figure 2, the relative value on the y-axis from zero (minimum 
acceptable) to 100 (ideal) is given for each measure on the x axis. Using these value curves, value 
scores for a particular system on each measure are calculated in Figure 3. These value scores are 
multiplied by the swing weights in Figure 3 to calculate the weighted value on each measure. 
Lastly, the weighted values on the measures are summed to calculate the total system value. Figure 
3 shows the calculation of value for 1 alternative. 
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Figure 2. Value Curves (Performance vs Normalized Value) 

 
Figure 3. Value Calculations 

The cost for each system is calculated using the cost model in Figure 4. This cost model is a simple 
early pre-milestone A cost model which calculates an estimated cost based on the wingspan of the 
UAV. (Gundlach, 2012) 
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Figure 4. Case Study Cost Model 

In the case study, 64 specific point solutions were generated for the problem. However, it is 
important to note when compared to common practices and the minimum required by AoAs, 
identifying 64 solutions is far superior. (Small, et al., 2017) Propagating each of these point 
solutions through all of the models, reveals that only 29 of the 64 initial point-based designs meet 
the minimum requirements of the value model. The value and costs for these 29 point-based 
designs are mapped in the value vs cost tradespace in Figure 5. 

 
Figure 5. Value vs Cost for Point-Based Solutions 

UAV Tool 
Tradespace Analytics Tool Design. Using the ARDEC case study, our ERS research team has 
created an integrated model-based systems engineering tool that propagates design decisions made 
into physics-based models and regression models to eventually calculate value and cost of an 
alternative. For the continuous design decisions wingspan and flying altitude, the upper and lower 
levels were identified and placed as bounds for each decision. The sensor package design decision 
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from the case study was split into two separate decisions, the IR sensor and the EO sensor to allow 
for more flexibility. Specifically, the sensors were treated as discrete choices between 14 IR 
sensors and 15 EO Sensors. The engine choice was simply treated as a discrete choice between the 
two engines.  
Control Panel. The five design choices were placed on the control panel in Figure 6 allowing for 
users to select design decisions. Within this control panel, a user can select a desired wingspan, 
engine type, operating altitude and sensor combination. Following the AoA best practices used in 
the ARDEC case study, the design choices are simultaneously propagated through the calculations 
in the AFD (Figure 1) to the value and cost tradespace. (Parnell, 2017) 

 
Figure 6. UAV Tradespace Tool Control Page 
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Models and Worksheets. To propagate the design decisions to performance measures, the UAV 
tool uses the physics based models and the mathematical relationships from the case study. Each 
model or mathematical relationship was given its own excel sheet such as the weight calculation 
page in Figure 7. Moreover, all physics equations and mathematical relationships are dynamically-
linked through cell referencing allowing for simultaneous calculations meaning any update in 
design decisions immediately propagates throughout the model. 

 
Figure 7. UAV Weight Calculations 

Just as in the case study, these performance measures are propagated into the same multi-objective 
decision analysis model summarized in Figures 2 and 3. In addition, the cost is calculated using 
the same cost model in Figure 4. Once again, because this is an integrated model with cell 
referencing throughout, these calculations are simultaneous meaning that changes to the design 
decisions are immediately propagated to both value and cost and displayed on the control panel in 
Figure 6. 

Set-Based Design 
Defining the Sets. In the set-based design perspective, design decisions are composed two types 
of decisions. (Specking, et al., 2017) A design set driver is a fundamental design decision that 
defines the system platform. While a design set modifier is a component that can be modified to 
perform future missions without redesigning the platform. Accordingly, the sets in set-based 
design can be defined as the collection of design points of one instantiation of design set drivers. 
Moreover, some sets can be eliminated using stochastic and deterministic dominance in the value-
cost tradespace. 

Wingspan 5.2 Sensor Weight 4.2 Max Payload 1.38
Engine Type E Communications Link Weight 0.5 Appropriate Payload? FALSE
Fly Weight 7.7 Total Payload Weight 4.7



 

In the case study, the design set drivers are the wingspan and the engine type. The operating 
altitude and sensor combinations are design set modifiers. Therefore, the sets for the case study 
are the combinations of wingspan and engine type. 

Propagation of design decisions with Probability Management. In order to explore the design 
space and perform set-based design, an open source Excel add-in called SIPMath from Probability 
Management is used to vary the design choices (Probability Management, 2017). The design 
decisions are varied by performing Monte Carlo simulations for the continuous and discrete design 
decisions.  
To explore the designs space, the simulation is run 30,000 times creating 30,000 possible solutions, 
some of which are eliminated using feasibility checks. Through these 30,000 possible solutions, 
the design space is explored and mapped in cost and value space. However, because some of the 
variables are continuous and therefore have infinite possibilities, the design space can never be 
exhaustively explored.  
The resulting model is summarized in the Analytics Hierarchy displayed in Figure 8. Overall, for 
each of the 29,750 feasible system designs, there are 10 value measures and a cost model. There 
is a total of 1,380,000 calculations that are used to predict 100,000 value measures estimates and 
10,000 cost estimates. Using the value model summarized in Figures 2 and 3, these value measure 
and cost estimates result in 29,750 sets of value and cost that map and explore the tradespace and 
allow for tradeoffs between value and cost as insights into how to perform set-based design. 

 
Figure 8. UAV Tradespace Tool Analytics Hierarchy 

The value and costs for the solutions developed by the model are graphed in Figure 9. Directly 
comparing the value and cost identified by the 64 point solutions by mapping the efficient frontier 
of solutions of the model to the 64 points in Figure 10. This shows that none of the 64 initial points 
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reside on the efficient frontier. Therefore, strictly considering exploring the design space, set-based 
design is an improvement over point-based design. In addition, set-based design offers much more 
insight into the design process than simply identifying better point-based solutions. 

 
Figure 9. SBD Solutions 

  
Figure 10. SBD Efficient Frontier vs Point Solutions 

Beyond expanding the design space to fully explore the tradespace, set-based design seeks to delay 
design decision until more information is known. To do this, some sets need to be reduced or 
trimmed to help designers focus on the best sets. In order to gain insight into this process, sets can 
be graphically displayed in terms of the design set drivers. For instance, in Figure 11, the solutions 
are graphed according to the wingspan and engine-type sets. Each set contains the feasible 
solutions that exist when choosing the specific wingspan and engine type listed and varying all 
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other decisions. In this case study, the engine type E set has lower value but similar costs compared 
to engine type P. Also, the various wingspans increase the value slightly but also increase the cost. 
In other words, there is no clear best wingspan since there is a slight increase in value. Accordingly, 
since engine p has similar cost but higher value, the design set driver engine type can be trimmed 
by removing Engine E. This allows the analyst to increase the model details to only include piston 
engines and delay the decision on which wingspan to use until more is known.  

 
Figure 11.Sets by Design Drivers 

Overall, separating the solutions into their sets can provide insight allowing for trimming of sets 
as well as insight into which decisions should be delayed until more knowledge is gained. These 
insights can also give analysts into the cost and value drivers. Consequently, analysts gain insight 
into what sets they might wish to expand or investigate even further in order to increase value and 
costs. 

Future Research 
There are three major areas for future research: research on set-based design and tradespace 
exploration, improvements to the case study and the design model, and research on applying set-
based design to complex systems. Currently this demonstration model is focused on the early 
stages of set-based design. However, for these methods to be useful for the DoD, the set-based 
methodology must be able to move forward in the design stages. To do this, methods of trimming 
or reducing the number of sets must be developed.  

To improve the realism of the model and the case study to allow for better analysis of techniques, 
the model will be expanded to continue research into improving the AoA process for ERS. 
Specifically, there are seven areas of expansion that will be included in the UAV model. 

1. Resilience Options and Measures. As ERS is looking for more resilient solutions, 
resilience options as well as methods to measure and incorporate resilience, specifically 
resilience to threats during missions and platform resilience to adapt to new threats as 
a platform, into the value model will be included as the model. 

2. Resilience, Value, and Cost Trade-offs. As resilience is included, methods to perform 
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trade-offs between all three areas of interest must be developed. 
3. Life Cycle Cost Model. Currently, the cost model for the case study is a function of 

wingspan, however to increase the realism of the case study, a new cost model must be 
developed that not only incorporates system costs, but operating, maintenance, and 
disposal costs. 

4. Illities. As the model increases in detail, all relevant illities will be included to follow 
the framework to incorporate ERS into AoA best practices. 

5. Uncertainty. Currently uncertainty is not included in the case study, but it will be 
included in the future.  

6. Simulations. As the sets mature, simulation will be used to predict value measures and 
incorporate uncertainty rather than regression equations. 

7. Scenario Analysis. Various scenarios with different adversarial and environmental 
threats will eventually be included in the analysis. 

The third research area is using set-based design for complex systems, including systems of 
systems, which will significantly increase the modeling and simulation complexity.  Further 
research is needed to determine set-based design can scale to meet these challenges. 

Summary 
The ERS program seeks to leverage the capabilities of model-based systems engineering early in 
the design process to improve decision making in AoAs and select better system designs. With 
advances in computing allowing for increased use of physics driven model based engineering tools, 
we can identify and explore a larger tradespace. Traditional tradespace exploration with point-
based design often converges quickly on a solution, leading to modification of the chosen solution 
until it eventually meets the design objectives. However, this is only effective when the optimal 
solution is chosen. For complex systems, this prospect is very unlikely. When an inferior point-
based design is chosen, the subsequent iterations to refine that solution can be time consuming and 
lead to a suboptimal design. (Iansiti, 1995) (Kalyanaram & Krishnan, 1997) Conversely, TSE of 
set-based design considers sets of all possible solutions and enables down-selecting possibilities 
to converge at a final solution. 
Using the ARDEC case study, this research developed an integrated MBE model and example that 
can simultaneously propagate design decisions through physics models into the value and cost 
tradespace. Using an open source Excel add-in called SIPMath by Probability Management allows 
for the near instantaneous exploration of a large tradespace allowing for the set-based design 
analysis desired by the ERS program on a realistic pre-milestone A AoA example. Exploring the 
tradespace in this manner, analysts can identify far more solutions and a better efficient frontier 
that what traditional point-based design can identify. By determining sets by the design drivers 
analysts can perform set-based design on systems. This method can provide insight into the design 
decisions that allow for trimming of sets and delaying of some design decisions until information 
is available to confirm the best design solution by looking at the sets in the value and cost 
tradespace. 
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